Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 628(8009): 758-764, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538800

ABSTRACT

Van der Waals encapsulation of two-dimensional materials in hexagonal boron nitride (hBN) stacks is a promising way to create ultrahigh-performance electronic devices1-4. However, contemporary approaches for achieving van der Waals encapsulation, which involve artificial layer stacking using mechanical transfer techniques, are difficult to control, prone to contamination and unscalable. Here we report the transfer-free direct growth of high-quality graphene nanoribbons (GNRs) in hBN stacks. The as-grown embedded GNRs exhibit highly desirable features being ultralong (up to 0.25 mm), ultranarrow (<5 nm) and homochiral with zigzag edges. Our atomistic simulations show that the mechanism underlying the embedded growth involves ultralow GNR friction when sliding between AA'-stacked hBN layers. Using the grown structures, we demonstrate the transfer-free fabrication of embedded GNR field-effect devices that exhibit excellent performance at room temperature with mobilities of up to 4,600 cm2 V-1 s-1 and on-off ratios of up to 106. This paves the way for the bottom-up fabrication of high-performance electronic devices based on embedded layered materials.

2.
Nano Lett ; 24(1): 156-164, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38147652

ABSTRACT

Graphene nanoribbons (GNRs), quasi one-dimensional (1D) narrow strips of graphene, have shown promise for high-performance nanoelectronics due to their exceptionally high carrier mobility and structurally tunable bandgaps. However, producing chirality-uniform GNRs on insulating substrates remains a big challenge. Here, we report the successful growth of bilayer GNRs with predominantly armchair chirality and ultranarrow widths (<5 nm) on insulating hexagonal boron nitride (h-BN) substrates using chemical vapor deposition (CVD). The growth of GNRs is catalyzed by transition metal nanoparticles, including Fe, Co, and Ni, through a unique tip-growth mechanism. Notably, GNRs catalyzed by Ni exhibit a high purity (97.3%) of armchair chirality. Electron transport measurements indicate that the ultrathin bilayer armchair GNRs exhibit quasi-metallic behavior. This quasi-metallicity is further supported by density functional theory (DFT) calculations, which reveal a significantly reduced bandgap in bilayer armchair GNRs. The chirality-specific GNRs reported here offer promising advancements for the application of graphene in nanoelectronics.

3.
Sci Rep ; 13(1): 4328, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36922649

ABSTRACT

Graphene nanoribbons (GNRs) and carbon nanotubes (CNTs), two representative one-dimensional (1D) graphitic materials, have attracted tremendous research interests due to their promising applications for future high-performance nanoelectronics. Although various methods have been developed for fabrication of GNRs or CNTs, a unified method allowing controllable synthesis of both of them, as well as their heterojunctions, which could largely benefit their nano-electronic applications, is still lacking. Here, we report on a generic growth of 1D carbon using nanoparticles catalyzed chemical vapor deposition (CVD) on atomically flat hexagonal boron nitride (h-BN) substrates. Relative ratio of the yielded GNRs and CNTs is able to be arbitrarily tuned by varying the growth temperature or feeding gas pressures. The tunability of the generic growth is quantitatively explained by a competing nucleation theory: nucleation into either GNRs or CNTs by the catalysts is determined by the free energy of their formation, which is controlled by the growth conditions. Under the guidance of the theory, we further realized growth of GNR/CNT intramolecular junctions through changing H2 partial pressure during a single growth process. Our study provides not only a universal and controllable method for growing 1D carbon nanostructures, but also a deep understanding of their growth mechanism, which would largely benefit future carbon-based electronics and optoelectronics.

4.
Adv Mater ; 34(28): e2200956, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35560711

ABSTRACT

Graphene nanoribbons (GNRs) with widths of a few nanometers are promising candidates for future nanoelectronic applications due to their structurally tunable bandgaps, ultrahigh carrier mobilities, and exceptional stability. However, the direct growth of micrometer-long GNRs on insulating substrates, which is essential for the fabrication of nanoelectronic devices, remains an immense challenge. Here, the epitaxial growth of GNRs on an insulating hexagonal boron nitride (h-BN) substrate through nanoparticle-catalyzed chemical vapor deposition is reported. Ultranarrow GNRs with lengths of up to 10 µm are synthesized. Remarkably, the as-grown GNRs are crystallographically aligned with the h-BN substrate, forming 1D moiré superlattices. Scanning tunneling microscopy reveals an average width of 2 nm and a typical bandgap of ≈1 eV for similar GNRs grown on conducting graphite substrates. Fully atomistic computational simulations support the experimental results and reveal a competition between the formation of GNRs and carbon nanotubes during the nucleation stage, and van der Waals sliding of the GNRs on the h-BN substrate throughout the growth stage. This study provides a scalable, single-step method for growing micrometer-long narrow GNRs on insulating substrates, thus opening a route to explore the performance of high-quality GNR devices and the fundamental physics of 1D moiré superlattices.

5.
Phys Rev Lett ; 128(10): 106802, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35333064

ABSTRACT

By combining angle-resolved photoemission spectroscopy, scanning tunneling microscopy, atomic force microscope based piezoresponse force microscopy and first-principles calculations, we have studied the low-energy band structure, atomic structure, and charge polarization on the surface of a topological semimetal candidate TaNiTe_{5}. Dirac-like surface states were observed on the (010) surface by angle-resolved photoemission spectroscopy, consistent with the first-principles calculations. On the other hand, piezoresponse force microscopy reveals a switchable ferroelectriclike polarization on the same surface. We propose that the noncentrosymmetric surface relaxation observed by scanning tunneling microscopy could be the origin of the observed ferroelectriclike state in this novel material. Our findings provide a new platform with the coexistence of a ferroelectriclike surface charge distribution and novel surface states.

6.
Small ; 18(4): e2105687, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34837309

ABSTRACT

Electrostatic gating lies in the heart of field effect transistor (FET) devices and modern integrated circuits. To achieve efficient gate tunability, the gate electrode has to be placed very close to the conduction channel, typically a few nanometers. Remote control of a FET device through a gate electrode located far away is highly desirable, because it not only reduces the complexity of device fabrication, but also enables the design of novel devices with new functionalities. Here, a non-local electrostatic gating effect in graphene devices using scanning near-field optical microscopy (SNOM)-a technique that can probe local charge density in graphene-is reported. Remarkably, the charge density of the graphene region tens of micrometers away from a local gate can be efficiently tuned. The observed non-local gating effect is initially driven by an in-plane electric field induced by the quantum capacitance of graphene, and further largely enhanced by adsorbed polarized water molecules. This study reveals a non-local phenomenon of Dirac electrons, provides a deep understanding of in-plane screening from Dirac electrons, and paves the way for designing novel electronic devices with remote gate control.

7.
Nanoscale ; 13(35): 14628-14635, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34533156

ABSTRACT

Much of the richness and variety of physics today are based on coupling phenomena where multiple interacting systems hybridize into new ones with completely distinct attributes. Recent development in building van der Waals (vdWs) heterostructures from different 2D materials provides exciting possibilities in realizing novel coupling phenomena in a designable manner. Here, with a graphene/hBN/graphene heterostructure, we report near-field infrared nano-imaging of plasmon-plasmon coupling in two vertically separated graphene layers. Emergent symmetric and anti-symmetric coupling modes are directly observed simultaneously. Coupling and decoupling processes are systematically investigated with experiment, simulation and theory. The reported interlayer plasmon-plasmon coupling could serve as an extra degree of freedom to control light propagation at the deep sub-wavelength scale with low loss and provide exciting opportunities for optical chip integration.

8.
Nano Lett ; 20(4): 2770-2777, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32142296

ABSTRACT

Polaritons in two-dimensional (2D) materials have shown their unique capabilities to concentrate light into deep subwavelength scales. Precise control of the excitation and propagation of 2D polaritons has remained a central challenge for future on-chip nanophotonic devices and circuits. To solve this issue, we exploit Cherenkov radiation, a classic physical phenomenon that occurs when a charged particle moves at a velocity greater than the phase velocity of light in that medium, in low-dimensional material heterostructures. Here, we report an experimental observation of Cherenkov phonon polariton wakes emitted by superluminal one-dimensional plasmon polaritons in a silver nanowire and hexagonal boron nitride heterostructure using near-field infrared nanoscopy. The observed Cherenkov radiation direction and radiation rate exhibit large tunability through varying the excitation frequency. Such tunable Cherenkov phonon polaritons provide opportunities for novel deep subwavelength-scale manipulation of light and nanoscale control of energy flow in low-dimensional material heterostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...